Restriction of Aerobic Metabolism by Acquired or Innate Arylsulfatase B Deficiency: A New Approach to the Warburg Effect

نویسندگان

  • Sumit Bhattacharyya
  • Leo Feferman
  • Joanne K. Tobacman
چکیده

Aerobic respiration is required for optimal efficiency of metabolism in mammalian cells. Under circumstances when oxygen utilization is impaired, cells survive by anerobic metabolism. The malignant cell has cultivated the use of anerobic metabolism in an aerobic environment, the Warburg effect, but the explanation for this preference is not clear. This paper presents evidence that deficiency of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine 4-sulfatase), either innate or acquired, helps to explain the Warburg phenomenon. ARSB is the enzyme that removes 4-sulfate groups from the non-reducing end of chondroitin 4-sulfate and dermatan sulfate. Previous reports indicated reduced ARSB activity in malignancy and replication of the effects of hypoxia by decline in ARSB. Hypoxia reduced ARSB activity, since molecular oxygen is needed for post-translational modification of ARSB. In this report, studies were performed in human HepG2 cells and in hepatocytes from ARSB-deficient and normal C57BL/6J control mice. Decline of ARSB, in the presence of oxygen, profoundly reduced the oxygen consumption rate and increased the extracellular acidification rate, indicating preference for aerobic glycolysis. Specific study findings indicate that decline in ARSB activity enhanced aerobic glycolysis and impaired normal redox processes, consistent with a critical role of ARSB and sulfate reduction in mammalian metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a Novel Arylsulfatase B Gene Mutation in Three Unrelated Iranian Mucopolysaccharidosis Type-VI Patients with Different Phenotype Severity

Background: Mucopolysaccharidosis type-VI (MPS-VI), which is inherited as an autosomal recessive trait, results from the deficiency of N-acetylgalactosamine 4-sulfatase (arylsulfatase B) activity and the lysosomal accumulation of dermatan sulfate. In this study, ARSB mutation analysis was performed on three unrelated patients who were originally from the West Azerbaijan province of Iran. Method...

متن کامل

Photosynthesis, Nitrogen Metabolism and Antioxidant Defense System in B-Deficient tea (Camellia sinensis (L.) O. Kuntze) Plants

Response of tea plants to B deficiency was studied in hydroponic medium under environmentally controlled conditions. Plants height, number of leaves and dry matter production of shoot and root were significantly decreased by B deficiency. Concentration of chlorophyll, carotenoids, anthocyanins and flavonoids was not affected by B deficiency in the young leaf, while a significant reduction of Ch...

متن کامل

The Effect of 12 Weeks of Aerobic Training with or without Dietary Restriction on the Expression Levels of SIRT3, PGC1-α and SOD2 of Soleusmuscle in Male Rats

Background and Objectives: Background and Objectives: Recently, synergistic effect of dietary restriction (DR) on the exercise induced adaptations has attracted the attention of researchers. The aim of this research was to evaluate the effect of 12 weeks of dietary restriction with or without aerobic training on the gene expression or mRNA of SIRT3, PGC1-α and SOD2 proteins of soleusmuscle tiss...

متن کامل

Links between metabolism and cancer.

Metabolism generates oxygen radicals, which contribute to oncogenic mutations. Activated oncogenes and loss of tumor suppressors in turn alter metabolism and induce aerobic glycolysis. Aerobic glycolysis or the Warburg effect links the high rate of glucose fermentation to cancer. Together with glutamine, glucose via glycolysis provides the carbon skeletons, NADPH, and ATP to build new cancer ce...

متن کامل

Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane

BACKGROUND Cancer cells, and a variety of normal cells, exhibit aerobic glycolysis, high rates of glucose fermentation in the presence of normal oxygen concentrations, also known as the Warburg effect. This metabolism is considered abnormal because it violates the standard model of cellular energy production that assumes glucose metabolism is predominantly governed by oxygen concentrations and,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016